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Abstract 

Theory is developed for describing diffraction from 
polycrystalline fibers of helical molecules, in which the 
constituent crystallites contain correlated lattice disor- 
der and uncorrelated substitution disorder. The theory 
utilizes a recently reported description of cylindrically 
averaged diffraction by distorted lattices that is based 
in real space and uses an imposed correlation field to 
describe correlated disorder [Stroud & Millane (1996). 
Proc. R. Soc. London Ser. A, 452, 151-173]. The theory 
developed here is implemented as an efficient numerical 
algorithm for calculating diffraction patterns from fibers 
containing correlated disorder. Simulations are used to 
explore the effects of this kind of disorder and to 
characterize the disorder in a polynucleotide fiber whose 
diffraction pattern indicates its presence. This leads to a 
significant improvement in the agreement between the 
calculated and measured diffraction patterns over that 
from a model of only uncorrelated lattice disorder. 

1. Introduction 

X-ray fiber diffraction analysis is used to determine the 
molecular and crystal structures of polymers and rod- 
like macromolecular assemblies that can be prepared 
as oriented fibers or as rotationally disordered planar 
arrays (Arnott, 1980; Millane, 1988). The packing of 
molecules in fibers varies greatly, being ideally crys- 
talline over small domains in the case of polycrystalline 
fibers to being random in the case of non-crystalline 
fibers. Calculation of diffraction patterns from both these 
types of fiber is straightforward. In an ideal polycrys- 
talline fiber, the crystallites are randomly positioned 
and randomly rotated about an axis parallel to the long 
axes of the constituent molecules, so that the measured 
diffraction pattern consists of sharp Bragg reflections 
and is equivalent to the cylindrical projection of the 
diffraction pattern from a single crystal. In a non- 
crystalline fiber, the molecules are randomly positioned 
and rotated, and the diffraction pattern, which consists 
of intensity distributed continuously on layer lines, is 
equivalent to the cylindrical average of the diffraction 
pattern from an isolated molecule. 

Some fibers, however, give diffraction patterns con- 
taining both sharp reflections and continuous intensity on 
layer lines (Miller & Parry, 1974; Arnott, 1980; Stroud 
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& Millane, 1995a). The Bragg reflections are often con- 
fined to the center of the pattern, giving way to continu- 
ous layer-line intensities at high resolution. Specimens 
giving such patterns are essentially polycrystalline but 
the packing of the molecules in their crystallites is 
disordered in some way. Diffraction patterns of this kind 
have been used to determine structures by co-refining 
molecular and crystal structures against the continuous 
and Bragg diffraction (Arnott, Chandrasekaran, Millane 
& Park, 1986; Park, Arnott, Chandrasekaran, Millane & 
Campagnari, 1987), and treating the continuous intensity 
data as if from a non-crystalline fiber and the low- 
resolution Bragg data as if from an ideal polycrystalline 
specimen. Such an analysis is only approximately valid 
at best, since it ignores the effects of disorder on the 
diffracted intensities. Modeling disorder in polycrys- 
talline fibers and quantifying its effect on diffraction is 
necessary for accurate structure determination using data 
from these kinds of pattern. Furthermore, identifying 
the kinds of disorder in a fiber may be important 
in its own right with regard to its relevance to the 
structure-function relationships of th~ molecules and 
the aggregates they form (Miller & Parry, 1974). The 
advent of methods for accurately measuring continuous 
diffraction data (Fraser, Macrae, Miller & Rowlands, 
1976; Makowski, 1978; Millane & Arnott, 1986) affords 
the possibility of more fully utilizing diffraction datafor 
this purpose. 

Previously (Millane & Stroud, 1991; Stroud & 
Millane, 1995a,b), we reported an extension to several 
earlier descriptions of diffraction from polycrystalline 
fibers with uncorrelated disorder (Clark & Muus, 1962; 
Tanaka & Naya, 1969; Arnott, 1980). The disorder we 
considered consists of uncorrelated displacements of the 
molecules away from the positions they would occupy in 
an ordered crystaUite, and uncorrelated variations in the 
orientations of the molecules about their long axes. The 
diffracted intensity calculated for fibers containing these 
forms of disorder separates into two distinct components: 
a set of Bragg reflections whose profiles are identical 
throughout reciprocal space and a set of continuous 
layer-line intensities. However, diffraction patterns 
measured from some disordered fibers do not appear 
to consist of distinct components of this kind. Rather, 
they show Bragg reflections that broaden with increasing 
resolution and merge into continuous diffraction at high 
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resolution (Hosemann & Bagchi, 1962). This is generally 
considered to result from correlated distortions of the 
crystal lattice (Alexander, 1969; Welberry, 1985; Fraser, 
Suzuki & Macrae, 1984). Incorporation of correlated 
lattice distortions into a model of polycrystalline fibers, 
and calculation of associated diffraction patterns, is the 
subject of this paper. 

Two models of lattices with correlated distortions 
are the paracrystal (Hosemann & Bagchi, 1962) and 
the perturbed lattice (Welberry, Miller & Carroll, 1980; 
Welberry & Carroll, 1982, 1983). In the paracrystal 
model, a distorted lattice is generated by replacing 
vectors that form the edges of the unit cell of a periodic 
lattice with vectors that vary in both length and direction. 
Although construction of one-dimensional paracrystals is 
straightforward, two- and three-dimensional paracrystals 
cannot be constructed so readily; the principle difficulty 
being one of prescribing a joint probability distribution 
for the random lattice vectors that corresponds to station- 
ary lattice statistics and is consistent with the constraint 
that the vectors describing the edges of each face of a 
distorted unit cell should add to zero so that there is 
closure of the face. The only paracrystal for which a 
method of construction has been determined is the so- 
called 'ideal paracrystal' (Hosemann & Bagchi, 1962). 
Each unit cell of an ideal paracrystal is a parallelepiped, 
so that the disorder is highly anisotropic and very 
restricted in form. 

In contrast to the paracrystal, a perturbed lattice is 
specified by the statistics of the correlated displacements 
of its sites away from those of a periodic reference 
lattice, rather than the statistics of the relative positions 
of its sites. This produces a rather general description 
of lattice disorder and, since the random variables that 
describe the distorted lattice are the actual positions of 
the lattice sites, the problem of satisfying cell closure 
is circumvented. Generally, it is assumed that only 
random variables describing the positions of neighboring 
lattice sites interact, and that the statistics of the lattice 
perturbations are stationary. Determining joint density 
functions for the displacements of the vertices of a 
single unit cell that are consistent with these assumptions 
is difficult, however. Nonetheless, statistics for two 
classes of perturbed lattices have been determined. The 
statistics of lattices belonging to the class of perturbed 
lattices referred to as 'Gaussian growth disordered lat- 
tices' (Welberry, Miller & Carroll, 1980; Welberry & 
Carroll, 1982) are anisotropic, with correlations along 
the principal lattice axes decaying more slowly than 
those along the diagonals. Members of the second, more 
general, class of perturbed lattices, referred to as 'general 
symmetric Gaussian disordered lattices" (Welberry & 
Carroll, 1983), have more complex correlation structures 
and are capable of producing a greater variety of diffrac- 
tion effects. In particular, the disorder statistics can be 
approximately isotropic over intermediate distances for 
appr. ~priate choices for the short-range-disorder parame- 

ters. Calculating diffraction from both growth disordered 
and general symmetric Gaussian perturbed lattices is 
extremely intensive computationally, particularly for the 
latter class of lattices. 

An alternative approach to formulating perturbed lat- 
tices, first adopted by de Graaf (1989), is to impose a 
correlation field on the lattice, rather than deriving it 
from nearest-neighbor statistics. The imposed field is 
assumed to at least approximate the actual field of a 
stationary model. We have recently developed this idea 
by formulating it in real space, rather than reciprocal 
space. For two-dimensional lattices, this allows the effect 
of Correlated distortions both in and out of the plane to be 
described readily, and leads to an analytical expression 
that permits efficient calculation of the cylindrically 
averaged intensity diffracted by lattices with isotropic 
correlation fields of arbitrary form (Stroud & Millane, 
1996). The calculated diffraction patterns reproduce the 
kinds of features (a gradual broadening of Bragg re- 
flections with increasing resolution and blending into 
the continuous diffraction) seen on diffraction patterns 
from some polymer fibers (Stroud & Millane, 1996). 
This model appears, therefore, to be potentially useful 
for describing disorder in such fibers. It was developed 
(Stroud & Millane, 1996), however, for a lattice only 
(i.e. with a point scatterer at each lattice site). In order 
to apply this model to the analysis of polycrystalline 
fibers, we therefore further develop it here to include 
the presence of helical molecules at each lattice site. 
This involves two steps. The first is to replace the point 
scatterers at each site of the distorted lattice with helical 
molecules and the second is to incorporate substitution 
disorder (described in the next section), which allows 
random variations in the rotations of the molecules about 
their long axes as well as random variations in their 
directions. 

In the next section, we outline our approach to this 
problem. The theory for calculating diffraction from 
polycrystalline fibers with correlated disorder is de- 
scribed in §3. Computational implementation of the 
theory is described in §4 and these methods are used 
to explore the effects of correlated disorder on diffrac- 
tion patterns in §5. The model is used to characterize 
correlated disorder in a polynucleotide fiber in §6 and 
the implications of this work are discussed in the final 
section. 

2. Preliminaries 

A polycrystalline fiber can be modeled as a statisti- 
cal ensemble of disordered crystallites formed by the 
aggregation of structurally regular segments of helical 
molecules. The crystallites are randomly rotated about 
their crystallographic c axes (chosen parallel to the helix 
axes of the molecules), which initially are treated as 
being oriented in a common direction referred to as 
the 'fiber axis'. The molecular segments forming the 
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crystallites are treated as being infinite in length so that 
the intensity diffracted by each crystallite is confined 
to a set of planes in reciprocal space. The intensity 
on a diffraction pattern is calculated by averaging the 
intensity diffracted by a crystallite over all disorder states 
and then cylindrically averaging this intensity to take 
into .account the random orientation of the crystallites 
about their c axes. The result of this procedure is a set 
of layer-line intensities. 

In a real specimen, the length of the structurally 
ordered segments of molecules that form crystallites, 
referred to as the coherence length, is finite, and the 
c axes of the crystallites have a range of orientations 
with respect to the fiber axis. Finite coherence length 
smears the layer-line intensities (calculated as described 
above) into bands parallel to the fiber axis and crystallite 
disorientation smears these bands along arcs centered 
on the origin of reciprocal space (Holmes & Barrington 
Leigh, 1974). The resulting two-dimensional diffraction 
pattern can be calculated from the layer-line intensities 
using equation (3a) of Holmes & Barrington Leigh 
(1974). We therefore focus our attention here on de- 
riving expressions for these layer-fine intensities, for a 
particular model of disordered crystallites. 

The types of disorder considered here can be classified 
as substitution disorder and lattice disorder. Substitution 
disorder consists of variations in the kinds of unit at 
each lattice site or, since a single molecule in different 
orientations may be considered to be different units, 
variations in the disposition of a molecule at a lattice site. 
Lattice disorder consist of deviations in the positions of 
the molecules from their positions in an ordered crystal. 
The molecules are treated as rigid bodies that do not 
deform as a result of disorder. 

We consider fibers in which the average crystallite 
structure can be described by a monoclinic unit cell 
(the c axis being the unique axis) containing one mol- 
ecule. This describes many polycrystalline biopolymer 
fibers. In the absence of disorder, the long axes of 
the molecules intersect a plane normal to the fiber 
axis, at the sites of a two-dimensional periodic lattice 
described by the primitive lattice vectors a and b. Lattice 
disorder consists of distortions of this two-dimensional 
lattice into three-dimensional space. The coordinates of 
the positions of the lattice sites are treated as zero- 
mean random variables, and conelations between the 
displacements of different sites are described by an 
imposed isotropic correlation field (de Graaf, 1989; 
Stroud & Millane, 1996). Substitution disorder con- 
sists of rotations of the molecules about their long 
axes and variations in their direction ( 'up'  or 'down').  
Axial translations of the molecules may be treated as 
a component of substitution disorder, rather than of 
lattice disorder, if convenient (i.e. if doing so leads to a 
simpler description of the disorder). Lattice disorder and 
substitution disorder are treated as being independent of 
one another. 

With cylindrical polar coordinates (R, ~, Z) in recipro- 
cal space, the layer-line intensities It(R ) diffracted from 
an ensemble of disordered crystallites can be written as 
(Suzuki, Fraser, Macrae & Rowlands, 1980; Stroud & 
Millane, 1995a) 

It(R ) = ((I(R, ~ , Z =  l/c))a)~, (1) 

where I(R, ~b, Z) is the intensity diffracted from a single 
crystallite, ()d denotes averaging over all states of 
disorder, ( )¢  denotes cylindrical averaging and c is 
the axial repeat distance of the molecules. In the next 
section, we develop (1) in detail for our model of 
correlated lattice disorder and uncorrelated substitution 
disorder. 

3. Theory  

The intensity diffracted by an ensemble of disordered, 
but oriented, crystallites can be written as (Stroud & 
Millane, 1995a) 

I(R) = ( (  ~-~ ~"~Slat(rjk)Fjk(R) 
j k 

x exp[i27rR • (rjk + , (2) 

where R is the position vector in reciprocal space, 
Slat(rjk) is the shape function describing the cross- 
sectional shape of the crystallites in the lateral plane, 
i~k(R ) is the structure factor of the molecule at the lattice 
site with indices (j, k) and dik is the displacement of this 
site away from its mean position r:,. = j a  + kb. The role 
of Slat (r) here is to select sites f ro~  an infinite periodic 
reference lattice for inclusion in the finite crystallite. 

As a result of substitution disorder, the structure 
factor~ Fi~(R) vary from site to site. With the assumption 
that thes~ variations are independent of the lattice disor- 
der, averages over the structure factors can be calculated 
separately from those over variations in the djk. For 
uncorrelated variations in the Fjk(R ), 

(R)) 

- I (IF(R)I2)d w h e n j = j '  a n d k = k '  
- I(F(R))dl 2 otherwise. (3) 

Separating the averages for lattice disorder and substitu- 
tion disorder in (2) and substituting from (3) gives 

I(R) = N{  ((If(R)12)d)V, -- (l(f(R)bl2) , } 

+ (I(F(R))dI2(Z(R))d)~, (4) 

where N is the number of lattice sites in each crystallite 
and 

Z(R)  "- ~ Slat(rjk) exp[i2~-R • (rj~ + dig)] (5) 
k 

is the interference function of the distorted lattice. 
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3.1. Lattice disorder 
The interference function Z(R)  describes diffraction 

from the distorted lattice that has point scatterers, rather 
than molecules, at its sites. For distortion vectors with 
stationary Gaussian statistics, the average of this func- 
tion over all disorder states is given by (Stroud & 
Millane, 1996) 

Following de Graaf (1989), we assume that corre- 
lations between the displacements of two sites depend 
only on their average separation Irjk I. Guided by the form 
of the correlation fields of Gaussian growth disordered 
lattices (Welberry, Miller & Carroll, 1980; Welberry & 
Carroll, 1982), we use circularly symmetric exponential 
correlation functions (Stroud & Millane, 1996) 

(Z(R))  d = ~'~ ~ exp(i27rR • rjk ) exp(-27r2RCjk Rr) 
j k 

x E ESlat(rj+j',k+u)Slat(rjtu), (6) 
j ' k' 

where Cjl ̀ is the covariance matrix of the components 
of the vector (dj - d  ), the superscript T denotes jk 00 
transposition and the vector rjk is now an intersite 
vector so that r00 = 0. The double summation in (6) over 
the indices j~ and k'  can be approximated as 

E ESlat(rj+j ' ,k+k')Slat(rj 'k  ')  ~'~ t(rjk)/Acell ,  (7) 
j' k' 

where t(r) is the autocorrelation of Slat(r) and Ace u = 
l a × b l is the area of the unit cell (Stroud & Mil- 
lane, 1996). Equation (7) is exact in the limit of large 
crystallites and when both of its sides are averaged 
over all possible positions of the shape function relative 
to the reference lattice (Stroud & Millane, 1996). We 
include this averaging in the calculation of the diffracted 
intensity as it removes the arbitrary choice of an origin 
for the shape function, and for small crystallites it aver- 
ages the intensity over small variations in the crystallite 
shapes, as defined by the actual lattice sites falling within 
the crystallite boundary, as will occur in a specimen. 
Substituting (7) into (6) then gives 

(X(R))d = (1/Acen)E E t(r#)exp(-27rZRCjkR T) 
j k 

× exp(i27rR, rjk ). (8) 

Further development of this expression requires specifi- 
cation of the lattice-disorder statistics that determine the 
covariance matrix, Cjk. Let (x, y, z) denote a Cartesian 
coordinate system in real space with the z axis parallel to 
the fiber axis and let (d~k, d y, dj~) denote the components 
of d.- in this system ~reJassume that the components JK 
of d. k are independent and that the covariances (d:kd~) 7 
and <d d o/ are equal. The lateral and axial singi d s,te 
variances are defined as 

Or?at -- <(dA)2>--  <(dj~)2) , O'axial2 = ((dj~)2), (9) 

Plat(r) = exp(--r/rhat) and Paxial(r) = exp(-r/r/axial), 

(11) 

where r = Irl and the constants r/lat and ~axial are 
correlation lengths. The exponential correlation fields of 
growth disordered lattices arise from the assumption that 
only molecules at neighboring sites interact. By choos- 
ing exponential correlation fields, we expect to retain 
some of the localized character of the interactions of a 
growth disordered system. Imposing isotropy constrains 
the number of parameters in the model and is consistent 
with the assumed circular symmetry of the marginal 
distributions of the displacement vectors. 

Using (9), (10) and (11) to evaluate Cjk and substi- 
tuting the result into (8) gives 

(Z(R))  d = (1/Acell) ~ ~ t(rjk)Wlat(R, rjk)Waxiai(Z, rjk) 
j k 

× exp(i27rR • rjk ), (12) 

where 

Wlat(R,r ) = exp{-47r2R2or2at[1 - Plat(r)]} (13) 

is the lateral lattice disorder weight and 

Waxial(Z, r) -- exp{--47r2Z2or2ial[1 -- Paxial(r)]} (14) 

is the axial lattice disorder weight. For a monoclinic 
system, the vectors rjt, all lie in a plane perpendicular to 
the fiber axis and hence the Z axis of reciprocal space, 
so that 

R "  rjk = Rrjkc°s(~b - -  ~jk) '  (15) 

where qo.. is the angle between r ,  and the x axis lr jr " 
Substitutmg (15) into (8) allows the interference function 
to be written explicitly in terms of the reciprocal-space 
coordinates (R, ~b, Z) as 

and the lateral and axial correlation functions as 

, J  ~,,(dZkd& ) Y Y z z 

Pla t ( r jk )= o r ? a t -  O'2at Paxial(rjk) 2 O'axia 1 
(10) 

(Z(R,~b,Z)) d = (1/Acell) ~--~ ~--~ t(rjk ) 
j k 

x Wlat(e , rjk)Waxial(Z , rjk ) 
× exp[i27rRrjk cos(~b -- ~Pjk)]" (16) 
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3.2. Substitution disorder 
The terms in (4) affected by substitution disorder 

are (F(R)) d and (IV(R)12)d . Evaluat ion o f  these terms 
differs depending on whether or not directional disorder 
is considered. Initially, we consider substitution disorder 
that does not involve directional disorder and defer 
consideration of the effects of directional disorder until 
§3.4. 

The complex amplitude, Ft(R, ~b), diffracted by a 
molecule with u v symmetry (u repeats and v turns of 
the molecular helix in one c repeat) and infinite length 
is given by (Cochran, Crick & Vand, 1952; Klug & 
Franklin, 1958) 

El(R, ¢) = F(R, ~b,Z = I/c) 
= Y~ Gnl(R)exp[in(~b + 7r/2)], 

n 

(17) 

where the G n l ( g )  are the Fourier-Bessel structure fac- 
tors given by 

Gnl(R) = Efj(IRI) L(Z Rrj) exp[i(27rlzj/c - ncpj)], 
J 

(18) 
where Jn(x) is the nth-order Bessel function of the first 
kind, the sum over j is over all atoms in the helical 
repeat unit and~(IR[) is the scattering factor of the jth 
atom with cylindrical polar coordinates (rj, ¢pj, zj). The 
summation in (17) is over all Bessel orders n satisfying 
the helix selection rule 

l = u m  + vn, (19) 

where m is any integer. 
It follows from (17) that the complex amplitude, 

El(R, ~b), diffracted by a molecule rotated through an 
angle qo about its long axis and translated along this 
axis by z, relative to a reference molecule with sh'ucture 
factors G,,I(R ), is given by 

F[(R, ~b) = exp(iZTrzl/c) y] Gnl(R ) exp[in(~b-qo+Tr/2)]. 
n 

(20) 
If p(qo, z)dqo dz is the probability that the angular posi- 
tion of a molecule fails in the interval (~o, qo + dcp) and 
the axial position in the interval (z, z + dz), then (20) 
implies that (Stroud & Millane, 1995a) 

(Ft(R, ~b))d = E wntGnt(R)exp[in(~ b + 7r/2)], (21) 
n 

w h e r e  Wnl , the substitution disorder weight, is defined as 

c/u  27r 

W n l =  f f p(qo, z)exp[i(27rzl/c-nqo)]dqodz. (22) 
0 0 

The limits in (22) correspond to the range of qo and z 
corresponding to distinguishable positions for a helical 

molecule with infinite coherence length. The probability 
density function p(cp, z) should be suitably defined and 
normalized on this interval (Stroud & Millane, 1995a). 
The disorder weights Wnt are used to express the effects 
of substitution disorder. For a particular kind of disor- 
der, p(qo, z) can be determined and the Wnt calculated 
using (22). For example, explicit expressions for wnt for 
random rotations, random axial translations and screw 
disorder are given in §3.6 of Stroud & Millane (1995a). 

Use of (21) gives 

(](Et(R, ~b))d]2)~ = ~ Iw,,tI2IG,,t(R)[ 2. (23) 
n 

Similarly, it follows from (20) that 

((lEt(R, ~))12)d)~ b - -  ~ ]G,t(R)I 2, (24) 
n 

which is independent of the substitution disorder. 

3.3. Combined lattice and substitution disorder 
The effects of correlated lattice disorder and uncorre- 

lated substitution disorder are combined by substituting 
(16), (21), (23) and (24) into (4). This gives 

It(R ) = (N) y]~(1 -IWnll2)lant(R)l 2 
n 

(1/acell ) E E [t(rjk)Wlat(R, rjk)Waxial(l/c, rjk) + 
j k 

, )] ×  w.tWm,  .(R)C.t(R)Gmt(R . (25) 
n m 

where, because of the averaging of the diffracted inten- 
sity over all positions of the shape function relative to 
the reference lattice, N in (4) has been replaced by the 
corresponding average (N) given by 

(N) = (~j Y~s(rjk) ) = t(O) /Acell = (26) 

where Acryst is the cross-sectional area of the crystallites. 
The function fj~n,,(R) in (25) is defined as 

27r 

fjkmn(R) = (1/27r) f exp[i(n -- m)(~ -t- 7r/2)] 
0 

x exp[i27rRrjkcos(~ - qOjk)] d~b, (27) 

which reduces to 

fjkmn(R) -- Jm_n(2"lrRl~ik) exp[i(n - m)tPjk]. (28) 

Substituting (28) into (25) and simplifying gives 

Z,(R) = (N) IG,,t(R)I 2 + (1/Ace,,) 
n 

× F_, ~'[t(rit,)Wlat(R, r it,)Waxial(I/c, r ik) 
j k 

× E E Jm-n(27rerjk)~(WntW*tGnl(R)G*t(R) 
rt m 

× exp[i(n - m)qojk]} ] , (29) 
J 
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. ! 

where the notatlon )-]j y']~ denotes a double summation 
that excludes the term j = k = 0 and N{ } denotes the 
real part. 

The first term in (29) represents the intensity dif- 
fracted by a non-crystalline fiber. The terms of the 
double summation modify this intensity and contribute to 
the sharp Bragg peaks. When there is significant lattice 
disorder, the lattice disorder weights approach 0 for large 
R and Z, the contribution of the the second term in (29) 
is small and the intensity approaches that diffracted by 
a non-crystalline fiber. 

Calculating a diffraction pattem using (29) would 
appear to require the computationally expensive evalu- 
ation of many Bessel functions, both those that appear 
explicitly in (29) and those that are needed to calculate 
the Fourier-Bessel structure factors. Fortunately, the 
number of evaluations required is limited by the fact 
that, at any radius R, the only significant Gnl(R ) are 
those for which 

Inl ~ 27rRrmax + 2, (30) 

where  rma x is the maximum radius of the molecule, 
are significant (Crowther, DeRosier & Klug, 1970; 
Makowski, 1982). ff the summations over m and n 
are truncated accordingly, the functions Jm_n(27rRrjk) 
need only be evaluated for m and n such that 

Im - n I <~ 47rRrma x + 4. (31) 

Additional savings in the number of computations are 
obtained when the effects of lattice and molecular sym- 
metry are taken into account. Depending on the helix 
symmetry of the molecules and the rotational symmetry 
of the lattice, these savings can be considerable, as is 
described in §3.5. 

3.4. Directional disorder 
A crystallite contains directional disorder when the 

constituent molecules are randomly oriented either 
parallel or antiparallel to each other. We define a 
'down' molecule as being generated from a reference 
'up' molecule by a 180 ° rotation about the axis 
(qo = qo 0, z = z0). Directional disorder does not change 
the average ((IFt(R, ~)12)d)~b given by (24) (Stroud & 
Millane, 1995a). If up and down molecules are equally 
likely to occupy a lattice site, then (21) is replaced by 

and the weights wnt express the effects of any other forms 
of substitution disorder that occur along with the direc- 
tional disorder. Substituting (32) into (4), along with (16) 
and (24), and evaluating the cylindrical averages gives 

(It(R)) = (N> ~ IGnt(g)l 2 "t- (1/Ac~,,) 
n 

× ~j ~kt[t(rj)Wlat(e'rjk)Waxial(l/c'rjk ) 

× E E Jm ,,(27rRrkl~{w,aw*tH, a(RlI-t*mt(R) - -  j 

n m 

× exp[i(n - m)qojk]} ] . (34) 

Equation (34) is identical in form to (29) except that the 
Gnl(R) are replaced by nnl(R ) in the double summation. 

3.5. Effects of lattice and molecular symmetry 
Terms in (29) corresponding to vectors l'jk related by 

a symmetry of the undistorted lattice can be combined 
when the shape autocorrelation t(r) shares this symme- 
try. This is ensured if t(r) is circularly symmetric, as it 
is for crystallites that are circular in cross section. We 
assume that this is the case and write t(r) as t(r). 

The four types of two-dimensional lattice to be con- 
sidered (in decreasing order of symmetry) are hexagonal 
lattices, for which a = b and "7 = 120 ° ('7 being 
the angle between the average lattice vectors); square 
lattices, for which a = b and "7 -- 90°; rectangular 
lattices, for which a ¢ b and '7 = 90°; and oblique 
lattices (the remaining cases). 

A hexagonal lattice has sixfold rotational symmetry. 
Combining terms in (29) corresponding to vectors rjk 
related by this symmetry gives 

It(R ) -- (N) ~ Ia, l(R)l 2 + (1/Acell) 
n 
j - l [  

x y] ~ t(gk)Wlat(R, rjk)W~iai(l/c, rjk ) 
j>0 k=0 

× E E Jm-n(27rRrjk)~{WnlW*tGnt(R)G*t(R) 
n m 

x 2 exp[i(n - m)(~ojk + p~-/3)] , (35) 
p=O 

where the indices j and k are restricted to values corre- 
sponding to rjk with 0 < qojk < 7r/3. Since 

(El(R, ¢))d = ~ Wnlnnl(R) exp[in(~b + 7r/2)], (32) 
n 

where 

Hnl(R ) = (1/2){Gnt(R) + G~t(R) 
× exp[i(47rzol/c- 2nqo0)]} (33) 

f 

5 [ 6 if n - m is divisible 
e x p [ i ( n -  m)pTr/3] = / by 6 

p=O 0 otherwise, 

(36) 

terms in (35) for which n - m is not divisible by six 
vanish. Terms corresponding to rjk that are related by 
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reflection in the line qo = 7r/6 can be combined and (35) 
rewritten as 

It(R ) = (N) y]~ IGnl(R)l 2 + (1/Acell) 
rl 

X E ~'~' [t(rjk)Wlat(R, rjk)Waxial(l/c, rjk) 
j k 

x F, 
m n 

x  {W lW2,tanl(R)G2.(R)}], (37) 

where 

= 

6 go = 0 and p is divisible 
by 6 

12 cos(pqo) 0 < ~o < 7r/6 and p is divis- 
ible by 6 

6 ( - 1 )  p/6 qo = 7r/6 andp  is divisible 
by 6 

0 otherwise. 

(38) 

The factor @p(qo) is symmetric with respect to p, whereas 
J_n(X) = (-1)"J,,(x), so that the only non-zero terms in 
(37) are those for which m -  n is divisible by 6 and 
therefore even. Consequently, the non-zero terms are 
symmetric under an interchange of m and n. Combining 
terms related by this symmetry gives 

It(R) = (N) E IG ,(R)I 2 + (1/Acell) 
/1 

× }2 ~-]t [t(rjk)Wlat(R, rjk)Waxial(i/c ' rjk) 
j k 

X }2 }2 em.Om-n(~j~)Sm-n(2~Rrjk) 
n m>n 

{ • ( 1  *( 1}] ~ w w G  R G  R X nl ml nl ml ' (39) 

where e,, m is defined as 

1 m = n (40) 
emn = 2 m ~ n. 

If directional disorder is present, then G,t(R ) is replaced 
by nnl(R ) in the double summation in (39). 

Following reasoning similar to that used above for 
hexagonal lattices shows that (39) is valid for the other 
classes of lattices but with Op(qO) suitably redefined as 
follows: for square lattices, 

4 qo = 0 and p is divisible by 4 
8 cos(pqo) 0 < qo < 7r/4 and p is divis- 

ible by 4 
69p(cp) = 4(_1)p/4 qo = 7r/4 and p is divisible 

by 4 
0 otherwise; 

(41) 

for rectangular lattices, 

2 qo = 0 and p is divisible by 2 
2 ( - 1 )  e/2 qo = 7r/2 and p is divisible 

by 2 
Op(qO) = 4cos(p¢p) 0 < ~o < 7r/2 and p is divisible 

by 2 
0 otherwise; 

(42) 

and, for oblique lattices, 

2 0 < qo < 7r and p is divisible by 2 

Op(cp) = 0 otherwise. 

(43) 

The function Op(qo) selects out a subset of the terms 
involving Jm_n(27rRrjk) from (29) for inclusion in (39) 
so that significantly fewer of these terms need to be 
evaluated. In addition, the Bessel orders m -  n in (39) 
are restricted to values divisible by nrot, the degree of 
rotational symmetry of the lattice, whereas those in (29) 
are not. Molecular symmetry further restricts the values 
of the Bessel orders as follows. Since m and n must 
both satisfy (19), their difference must be a multiple 
of u. If u is not divisible by nrot, as may often be the 
case, then, for R within the resolution limit, few pairs 
of m and n satisfying the selection rule will also satisfy 
(31) and be divisible by nro r As the layer-line index l 
increases, the maximum value of R at which intensity 
is observed generally decreases so that the number of 
terms contributing to the intensity on the layer line 
decreases. In many cases, therefore, significantly fewer 
Bessel orders may need to be included in the calculation 
than expected. 

For example, the molecule described in §5 has 111 
helix symmetry, a maximum radius of approximately 
12/~ and packs on a hexagonal lattice. For diffraction 
data out to 3/~ resolution, only those Gnl(R) for which 

1 Inl ___ 22 are significant for R < 0.33/~- , and only those 
orders for which m - n is divisible by 6 are included in 
(39). As a result of the 111 symmetry, m - n is always 
equal to a multiple of 11 and, except when m = n, m -  n 
is divisible by 6 only when the magnitude of either m or 
n is greater than or equal to 66. Consequently, only those 
terms in (39) for which m -- n contribute significantly to 
the diffraction pattern. Therefore, apart from the Bessel 
functions needed to calculate GnI(R ), only the zero-order 
Bessel function Jo(27rRrjk) must be evaluated for each 
value of R and rjk when (39) is used to calculate the 
layer-line intensities. Overall, approximately 100 times 
fewer evaluations of J,,_~(27rRrjk ) terms are required 
using (39) instead of (29) in this case. 

4. Computational methods 

We have written software to calculate layer-line inten- 
sities using (39). The results presented in the following 
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two sections are generally for crystaUites that are circular 
in cross section, for which 

t(r) = 2 ~  - r~ sin ~, (44) 

where 
= cos-l(r/2rc)  (45) 

and re is the radius of the crystallites. Our software 
accommodates both the case where the crystallites are 
all of the same size and the case where they vary in 
size. The effects of a distribution of crystallite radii are 
discussed in §5.1. 

The calculation of intensity is performed in two 
stages by two independent programs. The first program 
analyzes the undistorted reference lattice and calculates 
the lengths, rjk, and angles, qajk, of the unique intersite 
vectors from which all other intersite vectors can be 
generated by application of the rotation and mirror 
symmetries of the lattice. Many of the unique rjk share 
the same cpj k. A lookup table of the unique cpj k is prepared 
so that all trigonometric terms in (39) need be calculated 
only once for each unique cpj~. This table is written to 
a file, along with a table of the unique rjk, stored in 
terms of their lengths and the index of qajk in the angle 
lookup table and the values o f  t(rjk)/Acell. This file is 
read and used by the second program, which calculates 
the layer-line intensities. 

One potentially prohibitive aspect of the calculation 
of intensities using (39) is the necessity to calculate 
Jn(27rRr~k) for many different rik and many R values 
in the ~terval 0 _< R _< Rma x, where Rma x is typically 
of the order of 0.3/~-i  for a wide-angle fiber diffraction 
pattern. The problem is severe when r C is large compared 
to the dimensions of the unit cell but can be alleviated 
by tabulating values Jn(x) for samples of x spaced by 
z3,x = 7r/32 over the range 0 < x <_ 47rRmaxr ¢ and 
calculating values of Jn(x) for arbitrary x, as required, 
from the table, using linear interpolation. The chosen 
sample interval corresponds to 1/32 of the period of 
oscillation of Jn(x) for large x and permits calculation 
of Jn(27rRr..k) with a maximum error of approximately 

4 J 
4-6 x 10- . Decreasing the sample interval produces no 
discernible change in plots of the calculated amplitudes. 
The values of Jn(27rRrjk ) are stored in memory, which 
allows layer-line intensities for different disorders to be 
calculated rapidly. 

The CPU time required to calculate a diffraction 
pattern varies, depending on the helix and lattice sym- 
mettles, the number of atoms in the helical repeat unit, 
the maximum radius of the molecule, the radius of the 
crystallites and the maximum reciprocal-space radius R. 
Some typical times for our software running on a Silicon 
Graphics Indy workstation with a 100 MHz R4000 pro- 
cessor and 32 Mbytes of memory, are shown in Table 1. 
Times are shown for calculating full diffraction patterns 
(all layer lines) out to 3/~ resolution for two molecules; a 
polynucleotide with 111 helix symmetry,-and a polysac- 

Table 1. Computational times for  calculation of  all 
layer-line amplitudes out to 3.0,~i resolution, for  crys- 

tallites with correlated lattice disorder 

Helix No. of atoms r~ ,  CPU 
symmetry Lattice* per repeat unit (A) rc time (s) 

11 t Hexagonal 61 12.0 5a 4.3 
111 Hexagonal 61 12.0 20a 5.0 
11 ~ Oblique 61 12.0 5a 5.9 
111 Oblique 61 12.0 20a 18 
21 Hexagonal 18 3.3 5a 1.2 
2~ Hexagonal 18 3.3 20a 2.6 
2t Oblique 18 3.3 5a 3.4 
21 Oblique 18 3.3 20a 10 

* For the oblique lattices, a = b and 7 = 111 o 

charide with 21 symmetry. Approximately 90% of the 
reported times are consumed by initialization of the 
Bessel function lookup tables and calculation of the 
Fourier-Bessel structure factors. Subsequent calculations 
of patterns for different disorder parameters require only 
approximately 10% of the reported times. The reported 
times indicate the practicality of calculating diffraction 
patterns using the real space expressions for diffracted 
intensity developed here. 

5. Simulations 

We have examined the effects of correlated disorder 
on diffraction from polycrystalline fibers by calculating 
diffraction patterns from model fibers incorporating vari- 
ous kinds of disorder. The molecule used in the calcula- 
tions was the polynucleotide duplex poly(dA), poly(rU), 
which has 111 helix symmetry and packs, on average, 
in a trigonal unit cell with a = b = 24.8 and c = 33.7 A 
(Arnott, Chandrasekaran, Millane & Park, 1986). This 
molecule was also used in our study of the effects 
of uncorrelated lattice and substitution disorder (Stroud 
& Millane, 1995a). Its Fourier-Bessel structure factors 
were calculated from the published coordinates (Arnott 
et aL, 1986) using 'water-weighted' atomic scattering 
factors to model the effects of disordered water in the 
fiber. The calculated diffraction patterns are presented as 

• • 1/2 plots of the diffracted amplitude I~ (R) on each layer 
line as these plots show details more clearly than do 
continuous tone representations of full two-dimensional 
patterns. 

The results are presented in the following two sub- 
sections. In the first, we investigate the effects of a dis- 
tribution of crystallite sizes and compare our real-space 
calculation with previous reciprocal-space calculations 
and, in the second, we investigate the effects of different 
degrees of correlated disorder on diffraction patterns. 

5.1. Comparison of real- and reciprocal-space 
calculations 

Here we consider the effect of a distribution of 
crystallite sizes (which, of course, there will be in a real 
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fiber specimen) on the diffracted intensity and compare 
patterns calculated using the real-space expressions for 
intensity described in this paper with those calculated 
using the reciprocal-space expressions developed by us 
previously (Stroud & Millane, 1995a). Comparisons are 
made first for the case of no disorder and second for the 
case of uncorrelated disorder. 

Fig. l(a) shows the amplitude on the equator (Z = 0) 
for an ideal polycrystalline fiber (i.e. one with no disor- 
der) with r c - 150/~ calculated using (39). The pattern 
shows considerable oscillating diffuse intensity between 
the Bragg reflections, particularly at small values of 
R. These oscillations are not observed on measured 
diffraction patterns because of instrumental broadening 
effects and variations in crystallite size. The effect 
of instrumental broadening can be approximated by 
convoluting the calculated diffraction pattern with an 
appropriate point spread function, while that of varying 
crystallite size is described by averaging (29) over an 
appropriate distribution of crystallite sizes. The effect 
of this averaging is to replace t(r) and N by their 
respective averages over the distribution of crystallite 
sizes. For circular crystallites, the shape autocorrelation 
function (44) is written as a function of r and r c, 
the crystallite radius, and the average autocorrelation 
function calculated as 

O O  

<t(r, rc) > = f t(r, rc)P(rc)drc, 
0 

where p(r¢) is the probability density function for circu- 
lar crystallites of radius r C. This integral is, in general, 
difficult to solve analytically but can readily be calcu- 
lated numerically. The average of N is simply (t(0, rc)). 
Fig. l(b) shows a diffraction pattern calculated for a 
fiber with no disorder and Circular crystallites, the radii 
of which vary according to a Gaussian distribution with 
mean 150/~. and standard deviation o- r = 20_~. The 
variation in crystallite size removes oscillations from the 
diffuse amplitude between the Bragg reflections and, as 
comparison of Figs. l(a) and (b) shows, does so without 
removing this diffuse amplitude or significantly altering 
the widths of the Bragg reflections. 

The diffuse amplitude appearing in Figs~ l(a) and (b) 
does not appear on patterns calculated in earlier studies 
of the effects of uncorrelated (Stroud & Millane, 1995a) 
and correlated (de Graaf, 1989) disorder on diffraction 
from fibers. In these earlier studies, the intensity dif- 
fracted from a fiber is expressed in reciprocal space as 
the sum of terms over the sites of the reciprocal lattice. 
Each term in the sum contains the Fourier transform 
of the shape autocorrelation function, which to facilitate 
calculation is approximated by a Gaussian 'profile' func- 
tion. Fig. l(c) shows the diffraction pattern calculated 
in reciprocal space using Gaussian profiles for a fiber 
with no disorder and r c = 150/~.. Comparing Fig. l(c) 
with Fig. l(a) shows that this pattern reproduces the 

I1) 

(46) -= . I  
I 

O. 

E 

"o 
N 

. I  

o 
Z 

Bragg reflections in Fig. l(a) but not the diffuse inten- 
sity. This is because the shape autocorrelation function 
corresponding to a Gaussian profile function differs from 
that given by (44). 

The Gaussian profile function used to calculate Fig. 
1 (c) was previously derived using methods described by 
Guinier (1939) and Hosemann & Bagchi (1962), and is 
given by (Stroud & Millane, 1995a) 

Z' (R) --" 7r2 ?'c4 exp(_Tr2r2R2), (47) 
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0.0 

(a) 
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R(A -~ ) 
Fig. 1. Equatorial diffraction for an ideal polycrystalline fiber with 

rc  = 150/~ and: (a) calculated in real space for no disorder with 
t(r) given by (44); (b) calculated in real space for no disorder 
and a Gaussian distribution of crystallite sizes with mean 150/~ 
and standard deviation 20/~; (c) calculated in reciprocal space for 
no disorder; (d) calculated in real space for no disorder and t(r) 
given by (47); (e) calculated in real space for uncorrelated lateral 
disorder with trla t ---- 1,0/~ and t(r) given by (44); (f) calculated in 
reciprocal space for uncorrelated lateral disorder with Orla t ~- 1.0/~,; 
(g) calculated in real space for uncorrelated lateral disorder with 
Crla t = 1.0/~ and t(r) given by (47). 
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the inverse Fourier transform of which is the shape 
autocorrelation function 

t(r) 2 4 exp, r2,~,.L/rc ) ~ T r  r c (48) 

Calculating the intensity diffracted from a fiber with no 
disorder using (39) but with (48) rather than (44) as the 
shape autocorrelation function gives the diffraction pat- 
tern shown in Fig. l(d). The diffuse amplitude at small 
R is computational noise resulting from the termination 
of the summation in (39) at a cutoff radius of r = 6rc; 
a necessary measure since the shape autocorrelation 
function (48) does not fall to zero at a finite radius. Apart 
from this noise, the patterns in Figs. l(c) and (d) are 
identical, indicating the equivalence of the description 
of diffraction developed here in real space and that 
developed previously in reciprocal space, at least for 
fibers with no disorder. 

The differences between patterns calculated in real 
space and reciprocal space are less significant for dis- 
ordered fibers. Figs. l(e) and (3") show patterns for a 
fiber with uncorrelated disorder with r c - 1 5 0 / ~  and 
O'la t = 1.2/~ using the real-space and reciprocal-space 
expressions for the intensity, respectively. The diffuse 
amplitude in Fig. l(e) has an oscillatory component 
that is quite significant at small R but is very small 
elsewhere. Repeating the real-space calculation but for 
a Gaussian shape autocorrelation function (47) gives the 
pattern in Fig. l(g). Apart from some computational 
noise at small R, this pattern is identical to that in Fig. 

i 
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w w i i i l l | i w l | 
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Fig. 2. Calculated equatorial diffraction with rc = 150 A, ~rta~ = 1.2/~ 
and: (a) r/tat = 0; (b) r/lat = 50/1;  (c) r/lat = 100 A,; and (d) 
r/tat = 150A.  

l(f), demonstrating the equivalence of the real-space 
and reciprocal-space descriptions of diffraction for the 
case of uncorrelated disorder. The former description 
has the advantage, however, that it can incorporate 
correlated disorder. Treatment of correlated disorder in 
reciprocal space is very difficult. Comparison of Figs. 
1 (e) and (g) shows that they are virtually identical except 
for the oscillations in the diffuse intensity at small R. 
A distribution of crystallite sizes smooths the diffuse 
intensity at small R but otherwise has no effect on the 
calculated diffraction pattern. Conclusions regarding the 
general effects of disorder on fiber diffraction patterns 
can, therefore, safely be drawn from patterns calculated 
for a single crystallite size. This approach is adopted in 
§5.2. 

5.2. Effects  o f  d isorder  on di f f racted ampl i tudes  

In this section, we present a series of calculated 
diffraction patterns that illustrate the general effects of 
correlated disorder on diffraction from fibers. Fig. 2 
shows a series of equatorial diffraction patterns calcu- 
lated for fibers with r c = 150A, O'la t " -  1.2,/t and Tllat 
ranging from 0 to 150/~, as indicated in the figure 
caption. The diffraction pattern for uncorrelated disorder 
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Fig. 3. Calculated equatorial diffraction with r,. = 150 ~ ,  61at -- 1.0/~ 
and: (a) m,t = 0.8/~ and Tllat = 0 ;  ( b )  O'lat "-" 1.18/l, and 
r/lat = 40 g,; (c) a t a t =  1.55/~ and r/tat = 80 ,/k; (d) O'lat = 1.85 /~, 
and ?~lat = 120A; and (e) crtat = 2.11 ~ and r/jar = 160/~. 
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(Fig. 2a) shows discrete reflections, which decrease in 
amplitude with distance from the origin, superimposed 
on a continuous background that shows the undulations 
of the molecular transform. When correlations are in- 
troduced, the distinction between Bragg and continuous 
amplitude is less clear (Figs. 2b--d). As ~lat increases, 
modulations that are the precursors of Bragg reflections 
appear in the continuous amplitude at large R while, 
closer to the origin, continuous amplitude is removed 
from between the Bragg reflections and concentrated 
to form broad bases for the reflections. Overall, the 

diffracted amplitude converges towards that for ordered 
crystallites as T/lat increases and the distortions of the 
lattice become more tightly correlated so that order is 
restored locally. 

As we have noted previously (Stroud & Millane, 
1996), the disorder parameters crla t and '//lat (and corre- 
spondingly O'axia I and r/axial) have opposing effects on the 
disorder in a crystallite with disorder increasing as (rlat 
increases but decreasing a s  Tllat increases. The variance 
in the separation of neighboring lattice sites projected 
onto each of the principle lattice vectors a, b and e 
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Fig. 4. Calculated diffraction patterns for  a fiber with rc = 100/~ and: (a) no disorder; (b) uncorrelated axial lattice disorder  with a~i~l - -  0 .75/~;  
(c) correlated axial lattice disorder  with (r~ial = 1.6/~ and r/~xi~ = 100/~,; and (d) correlated lateral and axial lattice disorder  with 
trlat = a~xi~l = 1 . 6 A  and rh= = r/~i~l = 100A.  
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can be adopted as measures of local disorder (Stroud 
& Millane, 1996). For a hexagonal lattice with isotropic 
disorder, the variance in the lateral separation of nearest 
neighbors is the same whether projected along a or b 
and is denoted here as ~2at. This variance is a strong 
determinant of the maximum reciprocal-space radius 
R out to which the interference effects of the lattice 
persist..Fig. 3 shows diffraction patterns calculated for 
r c = 150/~ and 61a t : 1.0/~, and O'la t and T/lat as indicated 
in the caption. From the patterns, it is evident that, with 
t~la t constant, reflections occur out to the same reciprocal 
radius once T/lat exceeds ,-~ 40/~. As Tllat and O'la t increase, 
however, the reflections at large R become broader 
and more rounded in appearance and merge into the 
continuous intensity. The Bragg reflections in the region 
0.14 ~ R ~ 0.2A. - i  broaden and merge to form a crest. 
At small values of R, the diffraction patterns change 
only marginally. Increasing the value of t~la t decreases 
the value of R at which reflection broadening is first 
evident, while decreasing t~la t has the reverse effect. 

The observations made above regarding the effects of 
lateral disorder also apply to those of axial disorder but 
with the effects extending in the direction of the Z axis. 
Fig. 4(a) shows the full diffraction pattern from a fiber 
with no disorder and Fig. 4(b) the pattern from a fiber 
with uncorrelated axial disorder with O'axia I : 0.75/~ 
and no lateral disorder. The uncorrelated axial disorder 
reduces the intensity of the reflections on the upper 
layer lines, without changing their widths, and introduces 
continuous intensity on these layer lines. The distinct 
Bragg and continuous components are clearly evident. 
Holding 6axial constant and introducing correlations into 
the axial disorder produces the pattern shown in Fig. 
4(c). Remnants of Bragg reflections still appear on the 
upper layer lines of this pattern but their profiles are 
much broader than those of reflections on the lower 
layer lines. Together, correlated lateral and axial lattice 
disorder give rise to diffraction patterns such as that 
in Fig. 4(d). The reflections in this pattern broaden 
with both increasing R and Z. Bragg reflections are 
completely absent from the periphery of this pattern and 
only small amounts of continuous intensity appear in its 
center. 

The effects of substitution disorder have not been con- 
sidered so far. Substitution disorder and lattice disorder 
are independent in the disorder model described here 
and, consequently, so are their effects on diffraction 
patterns. Substitution disorder by itself gives rise to 
diffraction patterns containing both Bragg reflections 
and continuous intensity, with the distribution of these 
two components in reciprocal space depending on the 
type of substitution disorder. Adding lattice disorder 
that is independent of the substitution disorder super- 
imposes the weightings of lattice disorder onto those 
of substitution disorder, suppressing reflections where 
either the lateral or axial disorder weights are small and 
enhancing the continuous intensity in these regions. For 

example, Fig. 5(a) shows the diffraction pattern from a 
fiber in which the molecule at each lattice site adopts 
one of two positions, (~ i ,  zi)  = (0, 0) or (270 °, 0), with 
equal probability [the disorder weights for this kind of 
substitution disorder are given by equation (70) of Stroud 
& Millane (1995a)] but with no lattice disorder. The 
key feature of this disorder is the elimination of Bragg 
reflections from layer line I = 2 for R < 0.18/~- 1. When 
lateral and axial correlated lattice disorder is added to the 
model (Fig. 5b), Bragg reflections are removed at high 
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Fig. 5. Calculated diffraction pattems for a fiber with rc = 100/~ 
and discrete rotations and translations with (~i, zi) = (0, 0) or 
(270 °, 0) and (a) no lattice disorder, (b) correlated lattice disorder 
with O-~ = O'axial  : 1.6/~ and r/~ = r/axm = 100/~. 
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resolution but the signature of the substitution disorder 
is still in evidence. 

Fig. 6(a) shows a diffraction pattern from a fiber with 
random screw disorder and no lattice disorder, while 
Fig. 6(b) shows the pattern from a screw-disordered fiber 
with con'elated lattice disorder. The principle effect of 
random screw disorder is the removal of sharp reflection~ 
from the upper layer lines close to the Z axis. When 
lattice disorder is introduced, this effect is not altered, 
although it is less clearly in evidence since the lattice 
disorder weakens the reflections unaffected by the screw 
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r andom screw disorder  and (a) no lattice disorder,  (b) correlated 
lattice disorder  with ~r,.t - -  ~rL, ial - -  1.6 A and that - -  ~/ui,d -"  lO0 A. 

disorder and completely removes the reflections at large 
values of R. 

Fig. 7 shows continuous tone representations of the 
amplitudes in one quadrant of the full diffraction patterns 
calculated from the layer-line amplitudes shown in Fig. 
5. These patterns are calculated as described in §4 of 
Stroud & Millane (1995a) for a disorientation angle 
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(b) 

Fig. 7. Calcula ted  full diffract ion patterns for  a fiber with a 0 --- 2 ° and 
l~ = 200 A, discrete rotat ions and translat ions with (~ i ,  zi) = (0, 0) 
or  (270 ° ,  0) and (a)  no lattice disorder,  (b) lattice disorder  with 
o',~¢ = o ~  = 1.6 A and rh., = r/~i.i = 100 A. 
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a 0 = 2 ° and a coherence length l c = 200/~. These 
figures illustrate the effects of disorder as they would be 
seen in two-dimensional measured diffraction patterns 
mapped into reciprocal space. 

6. Analys i s  of  correlated d isorder  
in a po lynuc leot ide  fiber 

Previously, we analyzed a diffraction pattern from a fiber 
of poly(dA), poly(rU) in terms of uncorrelated lattice 
disorder and substitution disorder using the reciprocal- 
space description of the effects of this disorder and 
adjusting the disorder parameters so as to optimize the 
agreement between the calculated and measured diffrac- 
tion (Stroud & Millane, 1995b). The observed diffraction 
was explained in terms of a model containing uncorre- 
lated lattice disorder and substitution disorder consisting 
of small rotations of the molecules about their long 
axes. However, as we noted previously, the distribution 
of intensity on the equator of the measured diffraction 
pattern indicates that the lateral lattice disorder in the 
specimen may be correlated (Stroud & Millane 1995b). 
The amplitude on layer lines other than the equator (see 
Fig. 6 of Stroud & Millane 1995b) is mainly contin- 
uous and the slight broadening of the reflections that 
remain, with increasing Z, can be attributed to the effects 
of finite coherence length and crystallite disorientation 
rather than to correlated axial lattice disorder (Stroud & 
Millane, 1995b). In this section, we extend our earlier 
analysis of diffraction from poly(dA), poly(rU) by in- 
eluding correlations in our description of lattice disorder 
and estimate the parameters of the model by matching 
the calculated and measured equatorial diffraction. This 
leads to a superior match between the calculated and 
observed reflection profiles. 

A trace of the diffracted amplitude on the equa- 
tor of the measured pattern is shown in Fig. 8(a). 
This trace shows four Bragg reflections in the region 
R < 0.14A -I  that broaden and give way to continuous 
amplitude at higher resolution, with a distinct crest in 
the continuous amplitude appearing at R "~ 0.16 .h, - I .  
The disorder parameters estimated previously (Stroud 
& Millane, 1995b) for the uncorrelated model are as 
follows: r c = 100/~, O'la t ----  O ' a x i a  1 - -  1.2/~, ro- 
tational disorder with o-~o = 30 °. Calculated layer- 
line amplitudes were corrected for the effects of crys- 
tallite disorientation with a 0 - -3  °, coherence length 
l C -- 175/~ and a Gaussian beam profile with a stan- 
dard deviation O'beam = 8 X 1 0 - a r k  - 1  . The equatorial 
diffraction for these parameters, calculated using (39), 
is shown in Fig. 8(b). This pattern matches the observed 
pattern in that Bragg reflections are eliminated from 
the region R ~> 0.17 ~/,-~ with the crest at R ~ 0.16/~-1 
being interpreted as the vestige of two Bragg reflections. 
The discrepancy between the relative amplitudes of the 
Bragg reflections at R _~ 0.046 and R _~ 0.08 ]k-l on 
the observed and calculated patterns has been discussed 

previously (Stroud & Millane, 1995b) and is thought to 
be due either to small errors in the molecular transform 
or to the presence of organized water or ions that 
increase the effective radius of the molecule. The relative 
amplitude of these two reflections is not, however, 
affected by disorder (Stroud & Millane, 1995b). The 
pattern in Fig. 8(b) differs from that in Fig. 8(a) in 
two other respects. First, the continuous amplitude on 
the calculated pattern produces shoulders on the Bragg 
reflections, particularly on the low-resolution sides of the 
reflections at R '~ 0.08 and R ~_ 0.12A - I ,  whereas the 
continuous intensity on the measured pattern blends into 
the Bragg reflections. And, second, the Bragg reflections 
on the calculated pattern are constant in width, whereas 
those on the measured pattern broaden with increasing 
R. Both these discrepancies indicate the presence of 
correlated disorder in the specimen. 

To help compensate for  any errors in the molecular 
transform, and to aid detailed comparison of the mea- 
sured and calculated reflection profiles, we divide the 
equator into four regions and normalize the calculated 
and observed amplitude in these regions to the respective 
peak amplitudes. The resulting measured amplitudes are 
shown as broken lines in Figs. 9(a)--(d), along with the 
amplitudes calculated using the model with uncorrelated 
disorder, which are shown as solid lines. Comparison of 
the measured and calculated amplitudes in Figs. 9(a)-(d) 
shows the discrepancies described above. The broad 
shoulders on the bases of the Bragg reflections calculated 
from the model are particularly evident in Figs. 9(b) and 
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Fig. 8. Equatorial diffracted amplitude from poly(dA) • poly(rU): (a) 
measured; (b) calculated for uncorrelated lattice disorder with 
(fiat -- 1.2 h., rotational disorder with tr~ = 30 ° and rc = 100/~, 
lc = 175/~,, or0 -- 3 ° and tr~m = 8× 10 -4/~-'; and (c) calculated 
for correlated lattice disorder with o'lat = 1.9/~, rltat = 125/~,, 
(r~) = 160/~, (r, = 20/~ and try, l,., (~o and tr~,m as in (b). 
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(c). The calculated and observed reflections in Fig. 9(b) 
match in width, whereas the calculated reflection in Fig. 
9(a) is broader than the observed reflection. This results 
f rom the inability of  a model  with uncorrelated disorder 
to describe peak broadening. Our goal is to see if  these 
discrepancies can be explained by correlated distortions 
of  the lattice. 

Since the parameters oht, ~ l a t  and r c together de- 
termine the shapes of  the Bragg reflections when cor- 
relations are introduced by increasing r/lat a w a y  f rom 
zero, the parameters (rlat and r c must  also be adjusted. 
A survey of  the equatorial diffraction for a range of  
values for these three parameters showed that the values 
O'la t "--  1.9/~, T/lat = 125/~ and r c = 160/~ gave the 
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best agreement between the measured and calculated 
amplitudes (Figs. 9e-h). The parameters a 0, Ic and abeam 
were fixed at the values given above. A variation in 
crystallite size with a r = 20/~ was needed in order 
to remove excessive oscillations from the calculated 
amplitude in the region R ~< 0.04/~ - l .  This variation 
does not significantly alter the width of the Bragg 
reflections. 

Previously, we estimated the crystallite radius as 
r C = 100 A in order to approximately match the widths 
of all the reflections calculated from the model with 
uncorrelated disorder with those of the reflections on 
the observed pattern. The smaller crystallite size resulted 
from our attempt to match the broader reflections at 
higher resolutions, the cost being that the calculated low- 
resolution reflections were then too broad. Correlated 
disorder, however, reproduces the reflection broadening 
with increasing resolution, making it possible to match 
the widths of both high- and low-resolution calculated 
reflections to those observed. The larger estimate of crys- 
tallite radius made here improves the width of the reflec- 
tion at R '~ 0.045/~-1 and, because of the steep slope of 
the molecular transform in the vicinity of this reflection, 
shifts the reflection towards the position of the observed 
reflection. The correlations in the lattice disorder remove 
the shoulders from the bases of the Bragg reflections at 
R _~ 0.08 and R _~ 0.12/~-1, greatly extending the range 
over which there is agreement between the calculated 
and measured amplitudes in Figs. 9(f) and (g). The 
leading edge of the crest at R ~ 0.16 A -~ is better 
matched by the continuous amplitude of the correlated 
model, but the t rough at R _~ 0.19/~- 1 remains. This 
trough occurs in the molecular transform and is not 
a product of interference from the disordered lattice. 
Overall then, the incorporation of correlated lattice dis- 
order substantially improves the agreement between the 
calculated and measured equatorial diffraction. 

It is interesting to note that (~lat = 1.7/~, for both the 
model with uncorrelated disorder and the model with 
correlated disorder. Both models predict, therefore, the 
same degree of short-range order in the specimen, but 
differ in their description of long-range order; the model 
that includes correlations giving the best description. 

7. Discussion 

The description of diffraction from disordered polymer 
fibers presented here is an extension of both our earlier 
model of uncorrelated disorder in fibers (Stroud & 
Millane, 1995a) and our description of cylindrically 
averaged diffraction from lattices with correlated lattice 
disorder (Stroud & Millane, 1996). In formulating the 
latter, we adopted an approach based on a summation 
of terms over the sites of a lattice in real space. This 
approach has several advantages over a convolution- 
based description in reciprocal space (de Graaf, 1989); 
it allows cylindrical averaging of the intensity to be 

performed analytically; it yields an equation for the 
diffracted intensity that allows layer-line intensities to 
be calculated at a lower computational cost; and it 
removes restrictions from the types of correlation fields 
for which calculation of diffraction patterns is feasible. 
This leads to a very flexible model into which other 
features, such as a distribution of crystallite sizes, are 
easily incorporated. 

In this paper, we have included molecules at the sites 
of the distorted lattice, included substitution disorder and 
obtained an expression for the cylindrically averaged 
intensity. When the average symmetry of the distorted 
lattice and the interaction between this symmetry and the 
helix symmetry of the molecules are taken into account, 
significant reductions in the number of calculations 
required to compute a fiber diffraction pattern using this 
expression are realized. 

Diffraction patterns calculated for fibers with corre- 
lated lattice disorder show Bragg reflections that broaden 
with distance from the origin of reciprocal space. The 
correlations permit the distribution of intensity at the 
periphery of a pattern to be manipulated without altering 
the distribution of intensity at the center. Without corre- 
lations, the transition from Bragg to continuous intensity 
is controlled by just two lattice disorder parameters, Crla t 
and aaxia ~. Making these parameters large removes Bragg 
reflections from the periphery of a diffraction pattern but 
introduces considerable continuous intensity at its center. 
With correlated disorder, however, it is possible to elim- 
inate Bragg reflections from the periphery of a pattern 
without introducing significant continuous intensity at 
the center (as is seen in many fiber diffraction patterns) 
by varying the disorder parameters in such a manner 
that the variances in the lateral and axial separations 
of neighboring molecules are not changed. Reflections 
at intermediate resolutions do, however, then broaden in 
consequence. This broadening is most pronounced when 
t~la t and t~axia 1 a r e  at least of order 0.04a, and r/lat and r/axia l 
are approximately equal to rc; that is, when there are 
large lattice distortions that are tightly coupled over the 
entire crystallite. Such disorder is reminiscent of that in 
a paracrystal. The difference here, however, is that the 
disorder is isotropic. 

The calculated patterns presented here show that 
correlated axial shifts of the molecules cause reflections 
to broaden with distance from the equator. They are 
not, however, the only source of this broadening. We 
have shown previously that crystallite disorientation and 
coherence length effects can significantly broaden Bragg 
reflections on the upper layer lines of a fiber diffrac- 
tion pattern by smearing intensity along the layer line, 
while at the same time reducing their peak intensities 
(Stroud & Millane, 1995b). This broadening differs from 
that produced by disorder, however, in that reflections 
closest to the meridian are broadened more than those 
removed from it. The widths of the layer lines on a 
recorded pattern and the extent of angular arcing of the 
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reflections indicate the contribution that disorientation 
and coherence length make to reflection broadening. 

Reflection profiles are determined by both the trans- 
form of the autocorrelation of the crystaUite-shape func- 
tion and the transform and self-convolution properties 
of the correlation fields. This is not directly evident in 
the current formulation but is evident in the reciprocal- 
space description of diffraction from distorted lattices 
(de Graaf, 1989; Stroud & MiUane 1996). Changing the 
correlation field changes both the profiles of the reflec- 
tions at low resolution and the broadening of reflections 
with increasing R and Z. Correlation fields other than the 
exponential fields considered here will alter the details of 
reflection broadening and may influence the distribution 
of continuous intensity in the low-resolution region of 
a diffraction pattern. For the exponential correlation 
fields chosen here, reflection broadening initiates at 
the base of the reflection and, as a result, continuous 
intensity appears between reflections at low resolution, 
even though the reflections are well resolved. This is 
evident in all of the patterns in Fig. 4, particularly on 
the equator where the reflections at R '~ 0.08 and R _ 
0.12A -1 have extended tails on their low-resolution 
sides. These tails are evident in the diffraction pattern 
calculated for a lattice with no disorder (Fig. 4a)and 
are, therefore, also related to the shape autocorrelation 
function used. 

The current model includes the description of substi- 
tution disorder developed previously (Stroud & Millane, 
1995a). Since substitution disorder and lattice disorder 
are treated as being independent, the effects of substitu- 
tion disorder are the same for correlated lattice disorder 
as they are for uncorrelated lattice disorder. One possible 
extension of the disorder model presented here would 
be to allow for coupling between substitution disorder 
and lattice disorder. Formulating a general description 
of this coupling is likely to be very difficult for the 
general case, if it is indeed possible at all. Such coupling 
would in general arise from specific interactions between 
molecules that, because of substitution disorder, would 
vary between different pairs of adjacent molecules, lead- 
ing to difficulties in formulating a general description 
of coupling between the two types of disorder. Detailed 
molecular models might, however, be used to investigate 
relationships between lattice and substitution disorder for 
specific systems. It should also be possible to combine 
the description of diffraction developed here with a 
description of the effects of correlated (cumulative) 
disorder within the molecules (Barakat, 1987; Inouye, 
1994). 

Comparison of the observed equatorial amplitude 
diffracted from a fiber of poly(dA), poly(rld) and that 
calculated from our model shows that introducing cor- 
relations significantly improves the match between the 
calculated and observed patterns. This is not an overall 
improvement due to an additional parameter in the model 
but an improvement in the character of particular fea- 

tures of the calculated pattern that leads to a much better 
match with the data. This indicates that the disorder 
model is consistent with the diffraction data from the 
biopolymer fiber considered and is probably, therefore, 
an appropriate model for other fiber specimens with 
diffraction patterns that show evidence of correlated 
lattice disorder. As shown here, matching calculated and 
measured diffraction pattems allows disorder parameters 
to be estimated and it may be possible to modify 
procedures for structure determination so that they take 
into account the effects of correlated disorder. 
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